49МЯт

English 2
Svenska 15
Norsk 28
Dansk 41
Suomi 54
Deutsch 68
Netherlands 81
Français 95
Italiano 110
Español 124
Português 137
E入入ఇviкá 150
Polski 164
Eesti 177
Lietuviškai 189
Latviski 204
Русский 218

Specification

Reading	$0,005 \mathrm{~mm}$
Accuracy	$\pm 0,005 \mathrm{~mm}$
Power	240 V
Temperature operation	$0-45^{\circ} \mathrm{C}$
Temperature storage	$-30-70{ }^{\circ} \mathrm{C}$
Humidity max	90%

CE Low voltage directive 73/23/EEC samt 89/336/EEC.

Warning / Maintenance

- Protect scales and Display from water, oil, metal chips, dust etc.
- Do not use in atmosphere with flammable gases and exposed in direct sunlight.
- High voltage and strong magnetism can damage the equipment.
- Turn off the power if the device not will be used for a long time.
- The Display have a charged lithium battery for save data. If the device not have been used for a long time, the battery can have been damaged.
- Keep the equipment clean. Clean with clean and soft rag, dipped in alcohol or similar cleaning fluid.

Installation

- The length of the scales have to be longer than machine movement.
- Check the scale are turned correct so reading value will be increasing in correct direction.

See coordinate system page 4.

- Parallelism between the scales and machine guide rails is not more than $0,15 \mathrm{~mm}$.
- Parallelism between the sides of the scales and the reading head is not more than $0,1 \mathrm{~mm}$
- The span between the scale surface and the reading head $0,8-1,0 \mathrm{~mm}$.
- The scale and reading head should be assembled in center of machine movement.
- If the scale are longer than 1000 mm , mounting pads should be installed to ensure the parallelism.
- The open side of scales should be installed to avoid contact from water, oil, cutting chips etc. The dustproof cover must have minimum distance to the scale $0,5 \mathrm{~mm}$.
- Signal wires and power cable must be proper fixed to avoid damage and hindered operation
- The Display must be installed with a separate ground wire.

L9MTT

English

Display

Display buttons

		Page
$\mathrm{X}, \mathrm{Y}, \mathrm{Z}$	Select axis.	4
Xo Yo Zo	Zero set axis.	5
	Halve display value	6
	Toggle between absolute and incremental value	5
	Store X Y Z positions	5
	Toggle between metric and imperial.	
	Oblique line function	10
	Arc cutting function	7, 8,9
	Circle holes function	11
	Finding zero automatically	5
\square	Stroll up and down to select.	
$008 / 1,1$	Inner cavity function	13
$1 / 12$	Bevel function	12
M3	Tool compensating function	14
ENT	Enter	

Calculator
Enter calculator function
Delete last input data
Inverse Trigonometric function
Trigonometric function key
Square root key
Add Decrease Multiple Divide

मЯМРт

Coordinate system

Setting

Example

Align the tool to A.
Zero X-axis. Press Xo
Press X Press 5. Press ENT
Move machine table to B. The display shows 12.000

Move machine table to C. The display shows 20.000

O: $(0,0)$
A: $(32,28)$
B: $(42,18)$
C: $(-32,28)$
D: $(-42,18)$
E: $(-42,-18)$
F: $(-32,-28$
G: $(42,-18)$
H: (32, -28)

Arc direction

A to $\mathrm{B}=0^{\circ}$ to 90°
B to $\mathrm{A}=90^{\circ}$ to 0°
B to $\mathrm{C}=90^{\circ}$ to 180°
C to $\mathrm{B}=180^{\circ}$ to 90°
C to $\mathrm{D}=180^{\circ}$ to 270°
D to $\mathrm{C}=270^{\circ}$ to 180°
D to $\mathrm{A}=270^{\circ}$ to 360°

मЯМРт

Start Press $\mathbf{1 / 0}$ button on backside of display

Zero set	The scales value can be zero in any position. Press Xo Yo or Zo.
Return	Terminate any function press same function button again.

Preset value
 Select any axis. Example X-axis. Press X.
 Press selected value with figure buttons. Confirm press

Absolute/Incremental Press value incremental value.

Store coordinate 200 coordinate positions can be stored. SDM Second Data Memory positions

Store an coordinate Press SOM. Select a number with figure buttons. Example 50. Adjust position machine table in selected position. Press Xo Yo or Zo Confirm ENT. The position is stored as SDM50

Search a stored
 Press

Axis compensation Linear error compensating is to rectify a system error. setting

For instance, machine table movement are not parallel to the scale.

This can be checked with gage blocks or similar.
An error can be compensated with a coefficient.
Example. Machine table movement is $400,000 \mathrm{~mm}$. The display shows 399,990.
The error is $0,010 \mathrm{~mm}$ in $400 \mathrm{~mm}=0,030 \mathrm{~mm} / \mathrm{m}$. Coefficient $=($ Measured value - Display value $) /($ Measured value $/ 1000)$ Press X Press $\mathrm{mm}_{\mathrm{m} / \mathrm{m}}$ Press coefficient $\mathbf{0 , 0 3}$. Press ENT.

LHMTT

Mid point calculation

Example

Move machine table to contact one side
Zero set X-axis. X-Display shows 0.000 Move machine table to contact opposite
side X-Display shows 156.000
Press $\mathrm{X} 1 / 2$ Display shows 78.000
Mid point is when X-Display shows 0.000

Automatic find zero

When machine table has been moved in case such as outage or stop in operation, it can be difficult to find reference zero.
Memorizing and finding the reference point must be in absolute system.
Zero set axis. Press Xo Yo.

Press NO
Select Find Zero function. Press

To find reference point of X axis. Press X

In the example is distance $\mathrm{A}-0=104 \mathrm{~mm}$.
Move table until X-axis shows 0 .

Find Y -axis referencepoint in same way. Press Y In the example is distance $B-0=20 \mathrm{~mm}$.

Arc cutting function

Example 1

Mount workpiece and tool setting. Zero set each axis. Press Xo Yo Zo.
Select Arc function. Press
 $A R C$ shows on the display.

Select plane XY, XZ orYZ. See page 4. Press with U
Example 1 above is plane XY. Confirm with Press for next step.
Input arc center CT Distance from centre of tool position to centre of arc.
CT in (a) $\mathrm{X}=22,5 \mathrm{Y}=12,5$
Press X 22,5 ENT. Press \mathbf{Y} 12,5 ENT. Press for next step.
CT in (b) $\mathrm{X}=12,5 \quad \mathrm{Y}=12,5$
Press 12,5 ENT. Press 12,5 ENT. Press \because for next step.
Input Arc Radius. RADIUS
Radius is 10 mm . Press 10 ENT

Input diameter of tool. TL DIA.
Diameter is 5 mm . Press 5 ENT. Press $\checkmark \checkmark$ for next step.

Input max cutting MAX CUT.

Select cutting depth for each cut. For instance 1 mm . Press
 for next step.

Input starting angle ST ANG. See page 4.
Given anti clockwise. 3 o' clock $3=0^{\circ} 120^{\prime}$ clock $=90^{\circ} 9$ o $^{\prime}$ clock $=180^{\circ} 6$ o' clock $=270^{\circ}$.
Example 1.3 o'clock to 12 o,clock. Start 3 o,clock. Press 0Press
 for next step.

49:MTT

English

Input ending angle ED ANG. Ending 12 o'clock. Press 90 ENT Press for next step.

Select inner or outer arc.

Press \checkmark for select outer $\operatorname{arc}=R A D+$ or inner arc $=R A D$ -
Example 1 is outer arc. Select $R A D+\operatorname{Press}$ ENT. Press \checkmark for next step.

Process.

If start position as 1(a) the display shows X 35.000 and Y 12.500.
If start position as $1(\mathrm{~b})$ the display shows X 0.000 och Y 12.500
Adjust machine table until X and Y axis shows 0.000 . Make the first cut. NO 1
Press \square Adjust machine table until X and Y axis shows 0.000 . Make second cut. NO 2

Press Adjust machine table until X and Y axis shows 0.000 . Make third cut NO 3 etc. $O V E R$ shows on the display when the process is finished.

Example 2

Mount workpiece and tool setting. Zero set each axis. Press Xo Yo Zo.
Select Arc function. Press $A R C$ shows on the display.

Select plane XZ . Press \because B. Confirm with ENT Press for next step.
Input arc center CT Distance from centre of tool position to centre of arc.
The value is different depending if a flat bottom milling tool or are milling tool is used.
CT for 2 (a) with arc milling tool. $X=32,5 \quad Z=-2,5$.
Press 32,5 ENT. Press $Z \pm 2,5$ ENT. Press \because for next step.
CT for 2 (a) with flat bottom tool. $\mathrm{X}=35 \mathrm{Z}=0$
Press X 35 ENT. Press 2 ENT. Press \because for next step.
CT for 2 (b) with arc milling tool. $X=-2,5 \quad Z=-2,5$.
$\operatorname{Press} \mathrm{X} \pm 2,5 \mathrm{ENT}$. Press $Z \pm 2,5$ ENT Press for next step.

मЯМРт

CT for 2 (a) with flat bottom tool. $\mathrm{X}=0 \mathrm{Z}=0$
Press 0 ENT. Press $Z 0$ ENT. Press for next step.

Input Arc Radius. RADIUS
Radius is 10 mm . Press 10

Input diameter of tool. TL DIA.

With arc milling tool is diameter 5 mm . Press 5
With flat bottom tool is diameter 0 mm . Press $\mathbf{0}$ ENT

Input max cutting MAX CUT.

Select depth for each cut. Example 0.5 mm . Press $\mathbf{0 . 5}$ ENT. Press for next step.
Input starting angle ST ANG. See page 4.
Given anti clockwise. 3 o $^{\prime}$ clock $3=0^{\circ} 120^{\prime}$ clock $=90^{\circ} 9$ o $^{\prime}$ clock $=180^{\circ} 6$ o' clock $=270^{\circ}$.
Example 2, from 6 o' clock to 9 o $^{\prime}$ clock. Start 6 o' clock. Press 270 ENT. Press \checkmark for next step
Input ending angle ED ANG. Ending $9 o^{\prime}$ clock. Press 180 ENT. Press for next step.

Select inner or outer arc.

Press for select outer arc $=R A D+$ or inner arc $=R A D$ -
Example 2 is inner arc. $R A D$-. Press ENT . Press $\checkmark \checkmark$ for next step.

Process.

Example 2(a) with arc milling tool the display shows X 32.500 and Z 10.000.
Example 2(b) with arc milling tool the display shows X 2.500 and Z 10.000.
Example 2(a) with flat bottom tool the display shows X 35,000 and Z 10,000.
Example 2(b) with flat bottom tool the display shows X 0,000 and Z 10,000 .
Adjust machine table until X and Y axis shows 0.000 . Make the first cut. NO 1
Press Adjust machine table until X and Y axis shows 0.000 . Make second cut. NO 2
Press \int Adjust machine table until X and Y axis shows 0.000 . Make third cut NO 3 etc.
OVER shows on the display when the process is finished.

НЯМРт

Oblique line function

(a)
(b)

Mount workpiece and move tool in position of first hole A
Zero set each axis. Press Xo Yo Zo.
Select oblique line function. Press
LINE shows on the display.

Select plane XY, XZ orYZ. See page 4. Press with \because Press Press for next step

Select length or step.

Length Mode L is distance of starting hole and ending hole. Example (a).
Step Mode S is distance between two adjacent hole. Example (b).

Input length. $L E N G T H$ shows on the display. Example (a) Mode L value is 30 mm .
Example (b) Mode S value is 10 mm . Press value. Press ENT Press for next step.
Input angel $A N G E L$ shows on the display. Press angel of oblique line.
Example (a) angel is 30°. Example (b) angel is -30°.
Press 30 alternativt -30. Press
Input number of holes. $N U M B E R$ shows on the display. Press number of holes.
Press 4. Press for next step.

Process.

No1. Adjust machine table until X and Y axis shows 0.000. Make first hole. Press
No 2. Adjust machine table until X and Y axis shows 0.000 . Make second hole. Press

OVER shows on the display when the process is finished.

НЯМРт

Circle holes function

Mount workpiece and move tool in position of first hole A
Zero set each axis. Press Yo Yo Zoo.
Select circle hole function. Press
 $P C D$ shows on the display.

Select plane XY, XZ orYZ. See page 4. Press with \square Press

Input central position of circle CT POS. Position from tool A to central of cicle 0.
Press X and value. Press ENT . Press Y and value. Press ENT . Press
Input diameter of circle DIA. DIA shows on the display. Press value. Press

Input number of holes. $N U M B E R$ shows on the display. Press number. Press ENT Press for next step

Input position of first hole ST ANG. Anges i grader. Se sid 4.
 Ex. 6 holes and first hole is 30^{\prime} clock $=0$ Press 0. Press Press for next step.

Input position of last hole ED ANG. 300° from first hole. Press 300 Press
Alternative can same be made by setting 7 holes. Than is first and last hole in same position.
In that case will ED ANG be 360 instead of 300 . Press \checkmark for next step.
Process. No. Adjust machine table until X and Y axis shows 0.000. Make first hole.
Press \checkmark etc. $O V E R$ shows on the display when the process is finished.

LPMTT

English

Bevel function

Zero set each axis. Press Xo Yo Zo.
Select bevelfunction. Press ${ }^{\text {sh/ } / 1 / 2}$ LINE shows on the display.
Select plane XY, XZ orYZ. See page 4. Press with $\square \square$ Press $\mathbb{E N T}$ Press $\checkmark \checkmark$ for next step
Input diameter of tool. TL DIA. Press value ENT. Press $\sqrt{\text { for next step. }}$ Input start position. ST POT Press X Press x-position. Press ENT. Press Z Press zposition. Press ENT. Press \checkmark for next step
Input end position. ED POT Press $\underline{\mathrm{X}}$ Press x-position. Press ENT .

Process. No1. Make first cut. Press
No2. Adjust machine table until X and Y axis shows 0.000 . Make second cut. Press
No3 Adjust machine table until X and Y axis shows 0.000 . Make second cut. Press

OVER shows on the display when the process is finished.

Exempel

Mount workpiece and move tool in position
Zero set each axis. Press Xo Yo Zo.
Select bevelfunction. Press
Select plane Plane XZ in example. Press $1 \checkmark$

Press ENT Press (ひ)

Input diameter of tool. TL DIA

Tool diameter is 5 mm .Press 5 Press Press
Input start position. ST POT Press X 0 ENT.

Press $Z-10$ ENT. Press $\sqrt{7}$ for next step
Input end position. $E D$ POT Press 10 ENT. Press 20 ENT. Press for next step.

Process. No1. Make first cut. Press \square etc.

L9MTT

English

Inner cavity function

Mount workpiece and move tool in position
Zero set each axis. Press Xo Yo Zo.
Select inner cavity function. Press FLAT shows on the display

Select plane $X Y, X Z$ orYZ. See page 4 Press $ص$ or
Select plane XY, XZ orYZ. See pa
Press ENT Press $\sqrt{\text { for next step }}$

Input diameter of tool. TL DIA

Tool diameter is 5 mm . Press 5 Press

(2) for next step.

Input central position of inner cavity CT.

Position from tool centre to central position of inner cavity

for next step.

Input size of inner cavity. SIZE. The size is $75 \times 60 \mathrm{~mm}$.
Press 75 ENT. Press $Z 60$ ENT. Press $\because G$ for next step.

Process.

No1. Adjust machine table until X and Y axis shows 0.000 . Make first hole. Press
No 2. Adjust machine table until X and Y axis shows 0.000 . Make second hole. Press

OVER shows on the display when the process is finished.

मЯМРт

English

Tool compensating function

To process part with four sides .
Mount workpiece and set tool in position as (2) or (3)
Zero set each axis. Press Xo Yo Zo.

(1)

Select tool compensating function.

Press \square WHICH shows on the display.

Selecta any of 8 processing models.

(2)

(3)

Example (2) Press 9. Press ENT
Example (3) Press 1 Press
ENT press \checkmark for next step.

Input diameter of tool. TL DIA

Tool diameter is 5 mm . Press 5 Press PNT Press for next step.

Process

Example (2). Move machine table until display shows $X 75.000$ and $Y 50.000$
Example (3). Move machine table until display shows $X-75.000$ and $Y-50.000$.
The process can be repeated for the two remaining sides.

